Sage Li

706-993-5224 | sageli766@gmail.com | https://www.linkedin.com/in/sageli/ | github.com/sageli766

Education

Georgia Institute of Technology	Atlanta, GA
Master of Science in Computational Data Analytics	Aug. 2024 – Current
Georgia Institute of Technology	Atlanta, GA
Bachelor of Science in Physics	Aug. 2020 - May 2024
Experience	
Research Intern	May $2022 - May 2023$
NASA Ames Research Center	Mountain View, CA
• Managed high performance computing (HPC) resources to simulate stellar flu	id dynamics.
• Architected simulation setup pipelines in Python, reducing runtime over older	r versions by over 70%.
• Introduced new functionality to simulations, allowing consideration of magnetic field effects.	
• Utilized Numpy, Pandas, and SciPy to conduct and automate time-series and	lysis on 100+ TB of data.
• Classified stellar noise with a PyTorch model to reduce stellar observation not	ise by over 80%.
Undergraduate Researcher	January 2022 – May 2022
Computaional Combustion Laboratory	Atlanta, GA
• Leveraged high-performance computing to simulate ramjet combustion dynamic	nics.
• Automated time-series analysis of 100+ GB of raw data using Python and M	ATLAB.
• Developed a mathematical model to identify critical parameters influencing jet	et stability.
Mathematics Instructor	June 2019 – January 2020
Mathnasium of Evans	Evans, GA
• Created an engaging learning environment to enhance students' problem-solve	ing skills.
• Provided personalized instruction in arithmetic, algebra, trigonometry, and ge	eometry.

Projects

Hit Error Analysis | Python, Pandas, Numpy, pymc, tkinter

- Conducted a bayesian analysis on user hit error in popular online rhythm game "osu!".
- Developed novel algorithms for object detection, improving runtime over popular programs by over 80%.
- Created a GUI-based application for visualizations and to streamline data collection pipeline.
- Constructed a hierarchical Bayesian model in pymc, identifying high-impact parameters on player performance.
- Sampled from the model with accompanying data using Markov Chain Monte Carlo (MCMC) techniques.
- Analyzed data and communicated results clearly with an accompanying academic research paper.

Algorithmic Stock Trading | Python, Numpy, Pandas, SciPy, PyTorch, Scikit-learn

- Developed a Python-based strategy backtesting and automated trade submission framework.
- Derived novel indicators for use in technical analysis and trading algorithms.
- Implemented a machine learning based market neutral pair trading strategy utilizing clustering.
- Developed a recurrent neural network (RNN) to predict market regimes and their ideal trading strategies.

Karaoke App | Python, JavaScript, Spotify API, Async. programming, OpenCV, Firebase

- Developed a cross-platform automated karaoke application
- Leveraged asynchronous programming to handle concurrent user requests and improve application responsiveness.
- Utilized OpenCV for autonomous interaction with a external applications.
- Integrated Google Firebase and Spotify API for user management and song recommendations.
- Created recommendation models using PyTorch to enhance user experience.

TECHNICAL SKILLS

Languages: Python, SQL, Java, JavaScript, MATLAB

Frameworks & Libraries: NumPy, Pandas, Scipy, Matplotlib, scikit-learn, PyTorch, Django, FastAPI, OpenCV
Tools & Platforms: Linux, Bash, regex, Git/GitHub, Jupyter Notebook, Google Firebase
Data Analytics: Machine Learning, Neural Networks, Time Series Analysis, Computer Vision, Bayesian models
Analytical Skills: Mathematics, Statistics (Bayesian and Classical), Physics (Classical and Modern)
Languages: English, Chinese (Mandarin), Japanese